Işık nedir ve özellikleri nelerdir

Konusu 'Güncel bilgiler' forumundadır ve Ayaz tarafından 15 Ağustos 2014 başlatılmıştır.

  1. Işık nedir özellikleri nelerdir

    Işık, görmemize olanak veren bir enerji biçimidir. Saniyede yaklaşık 300 bin kilometre hızla, dalgalar halinde yol alır. Güneş en önemli ışık kaynağıdır. Güneş ışığı olmadan dünyada hiçbir canlı yaşayamaz. Dünyayı ısıtan, besinlerin üretilmesini, solumamız için gerekli havayı sağlayan Güneş ışığıdır.

    Yakıtların oluşması da Güneş ışığına bağlıdır. Bundan milyonlarca yıl önce ölen bitkiler Güneş ışığının enerjisini depolamıştı. İnsanlar bugün petrol, kömür ve doğal gaz yaktığında bu depolanmış enerjiyi kullanmaktadırlar . Elektrik ışığı yapay bir ışık kaynağıdır. Ama doğal ya da yapay her türlü ışık atom denen parçacıklardan gelir. Atomlar enerji yüklüdür . Enerji parçacıklarına foton denir. Işık, elektromanyetik ışınım (radyasyon) üreten fotonlardan oluşur . Işık görülebilir. Oysa radyo dalgaları ve X ışınları gibi öteki elektromanyetik ışınım türleri gözle görülemez.

    Herhangi bir objenin görülebilmesi için ya kendisinin bir ışık kaynağı olması ya da üzerine düşen herhangi bir ışığı yansıtması gerekir. Işık kaynağı olmayan cisimler özelliklerine göre kendi üzerlerine düşen ışınların bir kısmını az veya çok yansıtırlar .

    Fotoğraf söz konusu olduğunda , ışığın dört temel özelliği vardır . Bunlar , parlaklık , yön , renk , kontrasttır. Işık ayrıca üç ana şekilde de incelenebilir . Direk ışık , yansıyan ışık , filtrelenmiş ışık . Pratik olarak ise iki tip ışık vardır , doğal ve yapay ışık .

    1. Parlaklık : Parlaklık , ışığın yoğunluğunun ölçüsüdür . Bir pozometre yardımı ile ölçülür . Pozu belirler , kameranın elde mi tutulacağına , sehpaya mı bağlanacağına karar vermekte yardımcı olur . Fotoğrafın rengini ve atmosferini belirler . Parlaklık , kar ile kaplı alanlar ve buzullarda görülebilicek şiddetten , yıldızsız bir gecenin karanlığına kadar farklılıklar gösterir . Sadece pozu etkilemez , fotoğrafın renk yorumunu da belirler . Parlak ışık genellikle , sert , ama her zaman gerçekçidir . Loş ışık ise daha gevşek , dinlendirici ve gizemlidir .

    Yüksek yoğunluklu aydınlatma , konuları daha yüksek kontrastlı ve renklerini daha parlakmış gibi gösterir . Loş ışık ise bunun tersi bir etki yapar . Böylelikle ışığın yoğunluğunu değiştirerek fotoğrafçı ürettiği görüntünün uyandırdığı duyguları ve atmosferi de kontrol eder . Dış çekimlerde eğer ışığın şiddeti çok fazla ise bir gri filtre yardımıyla ışığın şiddeti kontrol edilebilir . (Nötr yoğunluk filtresi “ND”) Bu tür çekimler özellikle açık diyafram kullanılması gereken durumlarda yapılır .

    İç mekan çekimlerinde konu düzlemindeki aydınlanmanın şiddeti , konu ile ışığın kaynağı arasındaki mesafeye bağlıdır ve en azından teorik olarak bilinen şu fizik kuralı geçerlidir . Aydınlanmanın şiddeti , konu-ışık kaynağı mesafesinin karesi ile ters orantılı olarak artar veya azalır . Daha pratik terimlerle ifade etmek gerekirse , ışık kaynağı-konu mesafesini “2″ misli artırırsanız konu düzlemindeki aydınlanmanın şiddeti 1/4′e düşer . Mesafe “3″ misli artırılırsa , şiddet 1/9′a düşer .

    Ancak bu kural sadece noktasal ışık kaynaklarında geçerlidir . Civarda yansıtıcı yüzey olmamalıdır . Örneğin , yansıtıcı bir tasa sahip bir fotoğraf ampulünde bu kural kısmen geçerlidir . Yansıyan ışığın miktarı arttığında kuralın geçerliği de yavaş yavaş kaybolur . Duvarlar ve tavandan yansıyan ışık bu kurala göre hesaplanmaz .

    Flüoresan ampulü gibi çizgisel ışık kaynaklarında ise bu kural tamamen geçersiz olup , bu durumda aydınlatmanın şiddeti mesafeyle doğru orantılı hale gelir . Yani konu-ışık kaynağı mesafesi “2″ misli artırılırsa , aydınlanmanın şiddeti yarıya düşer .

    2. Yön : Düşen ışığın yönü , gölgelerin pozisyonunu ve yoğunluğunu (miktarını) belirler . Bu durumda ışığın 5 türünden söz etmek mümkündür .

    2.1.Cephe(Önden) Işığı : Işık kaynağı az veya çok kameranın arkasındadır . Kontrastlık , başka aydınlatma şekillerine oranla daha düşüktür . Renkli fotoğraf için temel bir avantaj sayılabilir . Cephe ışığı aynı zamanda en düz ve en yassı etkiyi verir . Çünkü gölgeler tamamen veya kısmen objenin arkasındadır ve objektif tarafından görülmezler . Doğru renkler almak için cephe ışığı tavsiye edilse bile bu ışıkta hacim ve derinlik etkisinin en az seviyede olduğu bilinmelidir . Yüzde yüz cephe ışığı çok enderdir . Çünkü ister fotoğrafçının arkasındaki güneş , ister makinenin üzerine takılı flaş olsun , optik eksenden biraz kaçık olunca objenin bir yanında ince gölgeler belirmeye başlar . Gerçek cephe ışığı için en iyi kaynak ring flaşlardır . Çünkü objektifi kuşatan bu halka biçimindeki lamba gerçekten gölgesiz görüntü verir .

    2.2.Yanal Işık : Işığın kaynağı konunun yan tarafındadır . Ön taraftan ziyade hafifçe arkaya kaymış durumdadır . Üç boyutluluk izleminin ve renk veriminin iyi olması için sıkça başvurulan bir aydınlatma şeklidir . Yan ışık , kullanılması kolay bir şekildir ve daima iyi sonuç verir .

    2.3.Ters Işık : Işık kaynağı az veya çok konunun arkasındadır ve onu arkadan aydınlatır , gölgeler kameraya doğru uzar . Diğer aydınlatma şekillerine göre konu kontrastı daha yüksektir . Bu özelliği ters ışığı renkli fotoğraf için çok uygun olmadığını gösterir . Diğer taraftan bütün diğer aydınlatma şekillerine göre daha inandirici bir mekan ve derinlik hissi verir . Renkli çalışan fotoğrafçılar ters ışığı kullanımı zor fakat iyi kullanıldığı zaman insani ödüllendiren bir şekil olarak düşünürler . Hemen hemen değişmez bir biçimde ters ışık kullanımı olağanüstü güzellikler ve ifadeler dünyasının kapısını aralar . En dramatik ışık formudur . İfadeyi ve atmosferi kuvvetlendirmede eşsizdir .

    2.4.Tepe Işığı : Işık kaynağı az çok konunun üzerindedir . Diğer aydınlatma şekilleri arasında en az fotojenik olanıdır . Çünkü düşey yüzeyler doğru renk verimi için yeterince aydınlanmazlar . Gölgeler çok küçüktür ve derinlik ifadesi veremeyecek şekilde görüntüde yer alır . Dışarıda bu tipik öğle güneş ışığıdır . Fotoğrafa yeni başlıyanlarca parlak ve güzel bulunduğu için tercih edilir . Deneyimli fotoğrafçılar dış çekimler için uygun zamanın güneşin nispeten alçakta olduğu sabah erken ve öğleden sonraki geç saatler olduğunu bilirler .

    2.5.Alttan Gelen IŞık : Az çok konuların alttan aydınlatıldığı şekildir . İyi kullanılması zordur .

    3. Renk : Bir radyasyon kaynağından yayılan ışık homojen değildir . Aksine 380 ile 760 nanometre arasında değişen dalga boylarına sahip farklı renklerin yaklaşık olarak eşit miktarda karışımından meydana gelmiştir . Bütün dalga boyları müzikteki akorda benzer bir şekilde birbirleri ile uyum halindedir . Ancak kulağın müzükteki bir akoru dinlediğinde içerdiği notaları ayırt edebilmesine rağmen , göz gördüğü akkor halindeki beyaz ışığın içindeki dalga boylarını teker teker ayırt edemez . Renkli fotoğraf söz konusu olduğunda bu oldukça önemli bir faktördür . Çünkü göze beyaz görülmesine rağmen gerçekte beyaz olmayan ve renkli film tarafından da gerçek halleri ile kaydedilen birçok ışık türü vardır . Renkli film , ışığın spektrum yapısı içindeki farklılıklara , göze göre çok daha duyarlılık gösterir . Bu yüzden filmi etkileyen ışık onun dengelendiği ışıktan farklı ise sonuçta ortaya çıkan renkli dialarda belli bir yöne doğru renk sapması görülücektir . Bunu kanıtlamak amacıyla şöyle bir test yapılabilir . Üzerinde çeşitli renkler bulunan bir test kartının güneş ışığı altında , kapalı gök ışığı altında , akkor flamanlı lambadan yayılan ışık altında ve flüoresan ışığı altında fotoğraflarını çekelim . Filmin dengelendiği ışığın dışındaki türlerde renklerin doğal dışı ve farklı göründüğü fark edilicektir .

    Renkli filmler belli bir tür ışıkta doğru renk vermek için tasarlandıklarından , gözümüz de beyaz zannetiği ışığın içindeki küçük farklılıkları algılayamadığından , doğru renk elde edebilmek için doğru filmin , doğru ışıkta kullanılması gerekir . Bu nedenle ışığın belli bir sınıflandırmaya ve birimlendirmeye tabi tutulması gerekir . Bu amaçla hazırlanan cetvele Kelvin Skalası adı verilir .

    Kelvin Skalası adını İngiliz fizikçi W.T.Kelvin’den almıştır . Işığı renk ısısı türünden ölçer . Sadece akkor ışık kaynaklarında uygulanır . Kelvin skalasının başlangıç noktası mutlak “0″ yani -273 derecedir . Bir demir parçasını ısıttığımızda ısının miktarına bağlı olarak ışık yaymaya başladığını biliriz . Bundan yola çıkarak 1000 dereceye kadar ısıtılmış bir demir parçasının yaydığı kırmızımsı ışık için 1237K derecesi tanımlaması yapılabilir . Herhangi bir ışığın renk ısısı , siyah gövde radyatörü adı verilen ve bir tarafında delik bulunan içi boş metal bir kürenin tanımlanacak ışık ile aynı renge gelene kadar ısıtılıp santigrat cinsinden ölçülen derecesine 273 rakamının ilave edilmesi ise bulunur . Bulunan bu rakam incelenen ışığın “K” derecesidir . Bu noktada renklerden bahsederken sanatçıların tanımlamalarıyla fizikçilerin tanımlamaları arasındaki tersliğe dikkat çekilmelidir . Sanat çevrelerinde kırmızı ve komşusu olan renkler sıcak , mavi ve komşusu olan renkler soğuk diye tanımlandıkları halde , fizikçiler Kelvin Sklasında da görüleceği gibi , kırmızı grubu soğuk , mavi grubu ise sıcak tanımlarlar . Fizikçiler için koyu kırmızımsı ışık 1000K civarında olurken , mavi kuzey göğünden yayılan ışık 27000K civarında olabilir . Tabi bu hiçbirzaman göğün o bölümünün 27000 dereceye kadar ısındığı için o rengi yaydığı anlamına gelmez .

    Kelvinmetrenin ancak renk düzeltme filtre seti ile birlikte olduğunda bir anlamı vardır . Tek başına bir işe yaramaz . Kelvinmetre ancak konunun genelini aydınlatan ışıkta bir uyumsuzluk var ise düzeltilmesinde yardımcı olur . Konu içinde oluşmuş yerel renk sapmalarını düzeltmekte yararlı olamaz . Birinci tür kırmızı ve mavi , ikinci tür kırmızı , mavi magenta yeşil dengesini veren kelvinmetreler vardir